Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 880
Filter
1.
Mar Drugs ; 19(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34940697

ABSTRACT

High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides.


Subject(s)
Antinematodal Agents/pharmacology , Haemonchus/drug effects , Porifera , Thiazoles/pharmacology , Animals , Antinematodal Agents/chemistry , Aquatic Organisms , High-Throughput Screening Assays , Larva/drug effects , Thiazoles/chemistry
2.
Vet Res ; 52(1): 143, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895342

ABSTRACT

Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


Subject(s)
Anthelmintics , Haemonchiasis , Sertraline , Sheep Diseases , Animals , Anthelmintics/pharmacology , Anthelmintics/toxicity , Biotransformation , Haemonchiasis/drug therapy , Haemonchiasis/veterinary , Haemonchus/drug effects , Sertraline/pharmacology , Sertraline/toxicity , Sheep , Sheep Diseases/drug therapy
3.
Molecules ; 26(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34641389

ABSTRACT

Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.


Subject(s)
Anthelmintics/pharmacology , Haemonchiasis/drug therapy , Haemonchus/growth & development , Porifera/chemistry , Tissue Extracts/pharmacology , Animals , Anthelmintics/isolation & purification , Haemonchiasis/parasitology , Haemonchus/drug effects , High-Throughput Screening Assays , Tissue Extracts/isolation & purification
4.
Acta Crystallogr C Struct Chem ; 77(Pt 9): 505-512, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34482293

ABSTRACT

A chemical study of the hydro-ethanol extract of the leaves of Combretum glutinosum resulted in the isolation of nine compounds, including 5-demethylsinensetin (1), umuhengerin (2), (20S,24R)-ocotillone (3), lupeol (4), ß-sitosterol (5), oleanolic acid (6), betulinic acid (7), corymbosin (8) and ß-sitosterol glucoside (9). Four compounds have been isolated for the first time from the genus Combretum [viz. (1), (2), (3) and (8)]. The crystal structures of flavonoid (2), C20H20O8, Z' = 2, and triterpene (3), C30H50O3, Z' = 1, have been determined for the first time; the latter confirmed the absolute configuration of native (20S,24R)-ocotillone previously derived from the crystal structures of related derivatives. The molecules of (3) are linked into supramolecular chains by intermolecular O-H...O hydrogen bonds. The crude extracts obtained by aqueous decoction and hydro-ethanolic maceration, as well as the nine isolated compounds, were tested for their anthelmintic activity on the larvae and adult worms of Haemonchus contortus, a hematophage that causes parasitic disorders in small ruminants. The evaluated anthelmintic activity showed that the extracts at different doses, as well as all the compounds tested at 150 µg ml-1, inhibited the migration of the larvae and the motility of the adult worms of the parasite compared with the phosphate buffer solution negative reference control. The best activity was obtained with flavonoids (1), (2) and (8) on both stages of the parasite. The flavones that showed good activity can be used for the further development of other derivatives, which could increase the anthelmintic efficacy.


Subject(s)
Anthelmintics/pharmacology , Anti-Infective Agents/pharmacology , Combretaceae/drug effects , Combretum/chemistry , Flavones/pharmacology , Flavonoids/chemistry , Haemonchus/drug effects , Larva/drug effects , Plant Leaves/drug effects , Animals , Anthelmintics/chemistry , Anthelmintics/therapeutic use , Anti-Infective Agents/chemistry , Crystallography, X-Ray , Flavones/chemistry , Flavonoids/pharmacology , Haemonchus/growth & development , Hydrogen Bonding , Plant Leaves/chemistry
5.
Vet Rec ; 189(3): e137, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34357612

ABSTRACT

BACKGROUND: The Barber's Pole worm, Haemonchus contortus is of major concern to sheep producers, particularly in the southern hemisphere. This nematode is also commonly found in many sheep flocks in Northern hemisphere countries but is generally not associated with acute clinical pathology. As with other nematode species, the pattern of disease is changing in the United Kingdom. Changes in management practices, climate, anthelmintic resistance prevalence and parasite adaptation are possible factors thought to be responsible for this. METHODS: In the present study, a combination of traditional applied parasitological and molecular species identification techniques were used to assess the capability of H. contortus infective larvae to over-winter on pasture and infect lambs in early spring. RESULTS: Adult and inhibited H. contortus worms were identified in previously worm-free tracer lambs that had grazed contaminated pasture in late winter/early spring (February/March). CONCLUSION: The study illustrated the benefit of using classical applied parasitology techniques in conjunction with molecular species identification methods to explore the epidemiology of gastro-intestinal nematodes of livestock. This study also demonstrated that larvae were able to survive over-winter, albeit in small numbers, and potentially contaminate pastures earlier than previously considered in northern regions of the UK.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance , Haemonchiasis/veterinary , Haemonchus/drug effects , Sheep Diseases/parasitology , Animals , Haemonchiasis/epidemiology , Haemonchiasis/parasitology , Scotland/epidemiology , Seasons , Sheep , Sheep Diseases/epidemiology
6.
Acta Trop ; 223: 106091, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34389333

ABSTRACT

Helminth infections remain a major constraint to livestock productivity in the tropical and subtropical areas across the world, especially in the areas where extensive grazing is practiced. The development of resistance to anthelmintic drugs, scarcity and high cost of purchase especially to farmers of low income in developing countries led to the need of alternative helminth control methods. However, there is an urgent need to discover novel drugs that can cure helminthiasis. A survey was carried out among agropastoralists to elicit information on the use of Ethnoveterinary Plants (EvPs) as alternative medicine for helminthiasis. The plants used by the agropastoralists were collected and identified at the Department of Botany Herbarium, University of Ibadan. The plant part was pulverized and cold macerated successively with n-hexane, ethyl acetate, methanol and aqueous methanol to obtain crude extracts. The methanolic extract was assayed against Haemonchus contortus at test concentrations (6.25, 12.5, 25, 50 and 100 µg/mL) and Albendazole at 25µg/mL were tested for the egg hatch inhibition assay. Eggs hatched and unhatched were counted under the microscope at 48, 96 and 144 hours (h). Among the EvPs identified, Terminalia glaucescens was the least utilized plant by the agropastoralists, and thus, selected for evaluation. The preliminary phytochemical screening revealed presence of tannin, alkaloid, saponin, flavonoid, phenolic, steroids, glycosides, triterpenes and reducing sugars. At 96 h, there were significant difference (P<0.05) in egg hatch inhibition (EHI) percentage at 100ug/mL (87.55), 50µg/mL (84.29) at inhibitory concentration (IC50 value 1.07) compared to 25ug/mL (100) for the Albendazol. At 144 h, there were no significant (P>0.05) differences observed in EHI values of methanolic extract of the leaf at 100ug/mL (89.69), 50ug/mL (87.06), 25ug/mL (85.53) and 12.5µg/mL (82.89) at IC50 value 1.08 compared to 25ug/mL (100) for the Albendazol. T. glaucescens leaf is a potential source of novel anthelmintics and further investigation should be carried out on its in vivo anthelmintic activity.


Subject(s)
Anthelmintics , Haemonchus , Ovum/drug effects , Plant Extracts , Terminalia , Animals , Anthelmintics/pharmacology , Haemonchus/drug effects , Larva/drug effects , Methanol , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Terminalia/chemistry
7.
J Ethnopharmacol ; 280: 114392, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34233206

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Helminthosis (worm infection) is a disease of grazing livestock, with significant economic implications. Increasing resistance to existing synthetic anthelmintics used to control helminthosis and the unwanted presence of residues of the anthelmintics reported in meat and dairy products present a serious global health challenge. These challenges have necessitated the development of novel anthelmintics that could combat drug resistance and exhibit better safety profiles. Spondias mombin L. (Anacardiaceae) is a plant that has been used traditionally as a worm expeller. AIM OF STUDY: The aim of the work reported herein was to isolate and characterise anthelmintic compound(s) from S. mombin leaf, establishing their bioactivity and safety profile. MATERIALS AND METHODS: Adult Haemonchus placei motility assay was used to assess anthelmintic bioactivity. Bioassay-guided chromatographic fractionation of acetone extract of S. mombin leaf was carried out on a silica gel stationary phase. The structure of the compound was elucidated using spectroscopy (1H and 13C NMR) and Liquid Chromatography-Mass Spectrometry (LC-ESI-MS). Screening to exclude potential cytotoxicity against mammalian cells (H460, Caco-2, MC3T3-E1) was done using alamar blue (AB) and CellTitreGlo (CTG) viability reagents. RESULTS: The acetone extract yielded an active fraction 8 (Ethyl acetate: methanol 90:10; anthelmintic LC50: 3.97 mg/mL), which yielded an active sub-fraction (Ethyl acetate: Methanol 95:5; anthelmintic LC50: 53.8 µg/mL), from which active compound 1 was isolated and identified as phaeophorbide-a (LC50: 23.0 µg/mL or 38.8 µM). The compound was not toxic below 200 µM but weakly cytotoxic at 200 µM. CONCLUSIONS: Phaeophorbide-a (1) isolated from S. mombin leaf extract and reported in the plant for the first time in this species demonstrated anthelmintic activity. No significant toxicity to mammalian cells was observed. It therefore represents a novel anthelmintic pharmacophore as a potential lead for the development of novel anthelmintics.


Subject(s)
Anacardiaceae/chemistry , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Tetrapyrroles/pharmacology , 3T3 Cells , Animals , Anthelmintics/chemistry , Anthelmintics/isolation & purification , Caco-2 Cells , Cell Line , Haemonchus/drug effects , Humans , Lethal Dose 50 , Mice , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Leaves , Tetrapyrroles/chemistry , Tetrapyrroles/toxicity
8.
Biochem Pharmacol ; 192: 114693, 2021 10.
Article in English | MEDLINE | ID: mdl-34302796

ABSTRACT

In the face of increasing drug resistance, the development of new anthelmintics is critical for controlling nematodes that parasitise livestock. Although hymenopteran venom toxins have attracted attention for applications in agriculture and medicine, few studies have explored their potential as anthelmintics. Here we assessed hymenopteran venoms as a possible source of new anthelmintic compounds by screening a panel of ten hymenopteran venoms against Haemonchus contortus, a major pathogenic nematode of ruminants. Using bioassay-guided fractionation coupled with liquid chromatography-tandem mass spectrometry, we identified four novel anthelmintic peptides (ponericins) from the venom of the neotropical ant Neoponera commutata and the previously described ponericin M-PONTX-Na1b from Neoponera apicalis venom. These peptides inhibit H. contortus development with IC50 values of 2.8-5.6 µM. Circular dichroism spectropolarimetry indicated that the ponericins are unstructured in aqueous solution but adopt α-helical conformations in lipid mimetic environments. We show that the ponericins induce non-specific membrane perturbation, which confers broad-spectrum antimicrobial, insecticidal, cytotoxic, hemolytic, and algogenic activities, with activity across all assays typically correlated. We also show for the first time that ponericins induce spontaneous pain behaviour when injected in mice. We propose that the broad-spectrum activity of the ponericins enables them to play both a predatory and defensive role in neoponeran ants, consistent with their high abundance in venom. This study reveals a broader functionality for ponericins than previously assumed, and highlights both the opportunities and challenges in pursuing ant venom peptides as potential therapeutics.


Subject(s)
Ant Venoms/pharmacology , Anthelmintics/pharmacology , Anti-Infective Agents/pharmacology , Hemolytic Agents/pharmacology , Insecticides/pharmacology , Peptides/pharmacology , Amino Acid Sequence , Animals , Ant Venoms/genetics , Ant Venoms/isolation & purification , Anthelmintics/isolation & purification , Anti-Infective Agents/isolation & purification , Ants , Brugia malayi/drug effects , Brugia malayi/physiology , Calliphoridae , Dose-Response Relationship, Drug , HEK293 Cells , Haemonchus/drug effects , Haemonchus/physiology , Hemolytic Agents/isolation & purification , Humans , Insecticides/isolation & purification , Male , Mice , Mice, Inbred C57BL , Peptides/genetics , Peptides/isolation & purification , Sheep
9.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068691

ABSTRACT

Due to widespread multi-drug resistance in parasitic nematodes of livestock animals, there is an urgent need to discover new anthelmintics with distinct mechanisms of action. Extending previous work, here we screened a panel of 245 chemically-diverse small molecules for anti-parasitic activity against Haemonchus contortus-an economically important parasitic nematode of livestock. This panel was screened in vitro against exsheathed third-stage larvae (xL3) of H. contortus using an established phenotypic assay, and the potency of select compounds to inhibit larval motility and development assessed in dose-response assays. Of the 245 compounds screened, three-designated MPK18, MPK334 and YAK308-induced non-wildtype larval phenotypes and repeatedly inhibited xL3-motility, with IC50 values of 45.2 µM, 17.1 µM and 52.7 µM, respectively; two also inhibited larval development, with IC50 values of 12.3 µM (MPK334) and 6.5 µM (YAK308), and none of the three was toxic to human liver cells (HepG2). These findings suggest that these compounds deserve further evaluation as nematocidal candidates. Future work should focus on structure-activity relationship (SAR) studies of these chemical scaffolds, and assess the in vitro and in vivo efficacies and safety of optimised compounds against adults of H. contortus.


Subject(s)
Haemonchus/drug effects , Small Molecule Libraries/pharmacology , Animals , Haemonchus/growth & development , Larva/drug effects , Larva/growth & development , Phenotype , Small Molecule Libraries/chemistry
10.
Acta Trop ; 219: 105920, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33861973

ABSTRACT

The synthesis of thiophenic compounds, previously identified in Tagetes patula, revealed that 4-(5'-(hydroxymethyl)-[2,2'-bithiophene]-5-yl)but-3-yn-1-ol), or simply Thio1, has a pronounced in vitro anthelmintic effect against Haemonchus contortus, showing 100% efficacy in the egg hatch and larval development tests presenting EC50 = 0.1731 mg.mL-1 and EC50 = 0.3243 mg.mL-1, respectively. So, this compound was selected to preparation of a nanostructured formulation to be orally administered to Santa Inês sheep. In general, from the fecal egg count reduction test (FECRT), it was observed that the product kept the parasitic load in the digestive tract of the hosts stable, with eggs per gram of faeces (EPG) counts having a mean value < 3,000 (EPGmean = 2167.1, efficacy = 36,45%), thus protecting the animals from health risks caused by a massive nematode infestation. To better understand the mode of action of this thiophene derivative, in silico molecular modeling studies were carried out with the glutamate-activated chloride channel (GluCl), a well-known molecular target of anthelmintic compounds. Based on the affinity score (GlideScore = -5.7 kcal.mol-1) and the proposed binding mode, Thio1 could be classified as a potential GluCl ligand, justifying the promising results observed in the anthelmintic assays.


Subject(s)
Haemonchus/drug effects , Nanostructures/chemistry , Thiophenes/chemistry , Thiophenes/pharmacology , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Asteraceae/chemistry , Drug Compounding , Feces/parasitology , Haemonchiasis/drug therapy , Haemonchus/physiology , Parasite Egg Count/veterinary , Sheep , Sheep Diseases/parasitology , Thiophenes/therapeutic use
11.
Exp Parasitol ; 225: 108105, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33812980

ABSTRACT

Following the previous findings reported by the present authors on the anthelmintic effect of hydro-ethanolic extract of Mentha pulegium, the volatile constituents of M. pulegium are now assessed in the present study by exploring its anthelmintic and its antioxidant proprieties using in vitro and in vivo assays. Egg hatch assay (EHA) and adult worm's motility assays (AWMA) were used to assess the in vitro activity against Haemonchus. contortus. The in vivo anthelmintic potential was evaluated in mice infected with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). M. pulegium EO demonstrated 100% inhibition in the EHA at 200 µg/mL (IC50 = 56.36 µg/mL). In the AWM assay, EO achieved total worms paralysis 6 h after treatment exposure. This nematicidal effect was associated to morphological damages observed in the cuticular's worm using environmental scanning electron microscopy (ESEM). At 400 mg/kg, M. pulegium oil showed 75.66% of FECR and 80.23% of TWCR. The antioxidant potential of this plant was also monitored by several in vitro assays: total antioxidant capacity was 205.22 mg GAE/g DW, DPPH quenching effect was IC50 = 140 µg/mL, ABTS activity IC50 = 155 µg/mL and FRAP effect of 660 µg/mL. Regarding the in vivo assay, M. pulegium EO demonstrated a protective effect against oxidative stress by increasing the activity of the endogenous antioxidants (SOD, CAT and GPx) during H. polygyrus infection.


Subject(s)
Anthelmintics/pharmacology , Mentha pulegium/chemistry , Oils, Volatile/pharmacology , Oxidative Stress/drug effects , Animals , Anthelmintics/analysis , Anthelmintics/therapeutic use , Antioxidants/metabolism , Disease Models, Animal , Haemonchiasis/drug therapy , Haemonchiasis/parasitology , Haemonchus/drug effects , Mice , Oils, Volatile/analysis , Oils, Volatile/therapeutic use , Ovum/drug effects , Parasite Load
12.
J Helminthol ; 95: e17, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33745470

ABSTRACT

The continuous use of synthetic anthelmintics against gastrointestinal nematodes (GINs) has resulted in the increased resistance, which is why alternative methods are being sought, such as the use of natural products. Plant essential oils (EOs) have been considered as potential products for the control of GINs. However, the chemical composition and, consequently, the biological activity of EOs vary in different plant cultivars. The aim of this study was to evaluate the anthelmintic activity of EOs from cultivars of Ocimum basilicum L. and that of their major constituents against Haemonchus contortus. The EOs from 16 cultivars as well the pure compound linalool, methyl chavicol, citral and eugenol were used in the assessment of the inhibition of H. contortus egg hatch. In addition, the composition of three cultivars was simulated using a combination of the two major compounds from each. The EOs from different cultivars showed mean Inhibition Concentration (IC50) varying from 0.56 to 2.22 mg/mL. The cultivar with the highest egg-hatch inhibition, Napoletano, is constituted mainly of linalool and methyl chavicol. Among the individual compounds tested, citral was the most effective (IC50 0.30 mg/mL). The best combination of compounds was obtained with 11% eugenol plus 64% linalool (IC50 0.44 mg/mL), simulating the Italian Large Leaf (Richters) cultivar. We conclude that different cultivars of O. basilicum show different anthelmintic potential, with cultivars containing linalool and methyl chavicol being the most promising; and that citral or methyl chavicol isolated should also be considered for the development of new anthelmintic formulations.


Subject(s)
Anthelmintics , Haemonchus , Ocimum basilicum , Oils, Volatile , Plant Extracts , Animals , Anthelmintics/pharmacology , Haemonchus/drug effects , Ocimum basilicum/chemistry , Oils, Volatile/pharmacology , Ovum/drug effects , Plant Extracts/pharmacology
13.
PLoS Pathog ; 17(3): e1009297, 2021 03.
Article in English | MEDLINE | ID: mdl-33720993

ABSTRACT

Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.


Subject(s)
Chloride Channels/drug effects , Haemonchus/drug effects , Ivermectin/analogs & derivatives , Nematode Infections/drug therapy , Animals , Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Drug Resistance/genetics , Ivermectin/pharmacology
14.
Vet Parasitol ; 292: 109399, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33711619

ABSTRACT

Nematodes develop resistance to the most common commercially available drugs. The aim of this study was to identify and evaluate the action of protein exudates from Mimosa caesalpiniifolia, Leucaena leucocephala, Acacia mangium, and Stylosanthes capitata seeds on the gastrointestinal nematode Haemonchus contortus. The exuded proteins were precipitated, dialyzed, lyophilized, and assessed for their effect on egg hatching and artificial larval exsheathment inhibition. Proteome analysis of the protein extracts was also performed. Although no egg-hatching inhibition was observed, all exudates showed efficacy in inhibiting the larval exsheathment of H. contortus larvae with an EC50 varying from 0.61 to 0.26 mg P mL-1. Proteomic analysis revealed the presence of proteases, protease inhibitors, chitinases, and lectins among other proteins in the exudates. Most of the exuded proteins belong to the oxidative stress/plant defense and energy/carbohydrate metabolism functional clusters. This study concluded that the bioactive proteins from different classes exuded by seeds of M. caesalpiniifolia, L. leucocephala, A. mangium, and S. capitata show stage-specific inhibition against H. contortus.


Subject(s)
Exudates and Transudates/chemistry , Fabaceae/chemistry , Haemonchus/drug effects , Plant Proteins/pharmacology , Seeds/chemistry , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Plant Exudates/chemistry
15.
J Nat Prod ; 84(4): 964-971, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33631073

ABSTRACT

Phytochemical profiling was undertaken on the crude extracts of Drosera magna to determine the nature of the chemical constituents present. In total, three new flavonol diglycosides (1-3), one new flavan-3-ol glycoside (4), and 12 previously reported compounds of the flavonol (5, 9), flavan-3-ol (15), flavanone (8), 1,4-napthoquinone (6, 7, 13, 14), 2,3-dehydroxynapthalene-1,4-dione (10-12), and phenolic acid (16) structure classes were isolated and identified. Compounds 1-9, 13, 17, and 18 were assessed for antimicrobial activity, with compounds 6, 7, 8, and 9 showing significant activity. Compounds 1, 2, and 6 were also evaluated for anthelmintic activity against larval forms of Hemonchus contortus, with compound 6 being active.


Subject(s)
Anthelmintics/pharmacology , Anti-Infective Agents/pharmacology , Drosera/chemistry , Flavonols/pharmacology , Glycosides/pharmacology , Animals , Anthelmintics/isolation & purification , Anti-Infective Agents/isolation & purification , Carnivorous Plant/chemistry , Flavonoids , Flavonols/isolation & purification , Glycosides/isolation & purification , Haemonchus/drug effects , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Western Australia
16.
Acta Trop ; 217: 105869, 2021 May.
Article in English | MEDLINE | ID: mdl-33631121

ABSTRACT

Haemonchus contortus, a blood-sucking parasite of small ruminants, produces very important economic losses in the productive sector. This abomasum parasite has become resistant to most commercial drugs worldwide, and alternatives to fight this problem are urgently needed. Essential oils (EO) are a complex mixture of volatile secondary metabolites, composed mainly by terpenoids and phenolic compounds, from plants that have several pharmacological properties, including anthelmintic activity. Particularly, citrus peel is a source of cold-pressed EO, where limonene is its major component, and can be used as an additional food component for ruminants. The aim of the present work was to determine the in vitro anthelmintic activity of EO from Citrus bergamia (EOB), C. x paradisii (EOG) and limonene against the benzimidazole-susceptible Kirby isolate of H. contortus, using the egg hatch test (EHT) and the exsheathed third stage larval motility test (XLMT) using a WMicroTracker equipment. Albendazole (ABZ) and monepantel (MON) were used as positive controls. The 50% inhibitory concentrations (IC50) in XLMT were 8.77 and 13.88 µg/ml for EOB and EOG respectively, after an incubation of 72 h. An interesting observation on XLMT resulted when the positive controls were tested on the same plate, but in different well of the EOB. The volatile components of the EO significantly influenced (P < 0.05) the percentage of larval motility, reducing values from 66.9 to 19.6% for ABZ, and from 72.8 to 33.7% for MON, when comparing the activity of positive controls in a control plate without EO. The in vitro anthelmintic activity of EOB and EOG shows that they could be interesting candidates for nematode control. It is still necessary additional studies against the adult stage of H. contortus in efficacy trials in infected animals to validate their anthelmintic activity.


Subject(s)
Anthelmintics/pharmacology , Citrus/chemistry , Haemonchus/drug effects , Oils, Volatile/pharmacology , Animals , Larva/drug effects
17.
Parasit Vectors ; 14(1): 101, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557939

ABSTRACT

BACKGROUND: Benzimidazole (BZ) anthelmintics are widely used to control infections with parasitic nematodes, but BZ resistance is an emerging threat among several nematode species infecting humans and animals. In Sudan, BZ-resistant Haemonchus contortus populations were recently reported in goats in South Darfur State. The objective of this study was to collect data regarding the situation of BZ resistance in cattle parasitic nematodes in South Darfur using phenotypic and molecular approaches, besides providing some epidemiological data on nematodes in cattle. METHODS: The faecal egg count reduction test and the egg hatch test (EHT) were used to evaluate benzimidazole efficacy in cattle nematodes in five South Darfur study areas: Beleil, Kass, Nyala, Rehed Al-Birdi and Tulus. Genomic DNA was extracted from pools of third-stage larvae (L3) (n = 40) during trials, before and after treatment, and pools of adult male Haemonchus spp. (n = 18) from abattoirs. The polymorphisms F167Y, E198A and F200Y in isotype 1 ß-tubulin genes of H. contortus and H. placei were analysed using Sanger and pyrosequencing. RESULTS: Prevalence of gastro-intestinal helminths in cattle was 71% (313/443). Reduced albendazole faecal egg count reduction efficacy was detected in three study areas: Nyala (93.7%), Rehed Al-Birdi (89.7%) and Tulus (88.2%). In the EHT, EC50 values of these study areas ranged between 0.032 and 0.037 µg/ml thiabendazole. Genus-specific PCRs detected the genera Haemonchus, Trichostrongylus and Cooperia in L3 samples collected after albendazole treatment. Sanger sequencing followed by pyrosequencing assays did not detect elevated frequencies of known BZ resistance-associated alleles in codon F167Y, E198A and F200Y in isotype 1 ß-tubulin gene of H. placei (≤ 11.38%). However, polymorphisms were detected in H. contortus and in samples with mixed infections with H. contortus and H. placei at codon 198, including E198L (16/58), E198V (2/58) and potentially E198Stop (1/58). All pooled L3 samples post-albendazole treatment (n = 13) were identified as H. contortus with an E198L substitution at codon 198. CONCLUSIONS: To the knowledge of the authors, this is the first report of reduced albendazole efficacy in cattle in Sudan and is the first study describing an E198L substitution in phenotypically BZ-resistant nematodes collected from cattle.


Subject(s)
Anthelmintics/pharmacology , Benzimidazoles/pharmacology , Drug Resistance/genetics , Haemonchiasis/veterinary , Haemonchus/drug effects , Trichostrongylus/drug effects , Animals , Cattle/parasitology , DNA, Helminth , Feces/parasitology , Female , Genome, Helminth , Haemonchiasis/epidemiology , Haemonchus/genetics , Male , Parasite Egg Count , Sudan/epidemiology
18.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431676

ABSTRACT

Pathogen interactions arising during coinfection can exacerbate disease severity, for example when the immune response mounted against one pathogen negatively affects defense of another. It is also possible that host immune responses to a pathogen, shaped by historical evolutionary interactions between host and pathogen, may modify host immune defenses in ways that have repercussions for other pathogens. In this case, negative interactions between two pathogens could emerge even in the absence of concurrent infection. Parasitic worms and tuberculosis (TB) are involved in one of the most geographically extensive of pathogen interactions, and during coinfection worms can exacerbate TB disease outcomes. Here, we show that in a wild mammal natural resistance to worms affects bovine tuberculosis (BTB) severity independently of active worm infection. We found that worm-resistant individuals were more likely to die of BTB than were nonresistant individuals, and their disease progressed more quickly. Anthelmintic treatment moderated, but did not eliminate, the resistance effect, and the effects of resistance and treatment were opposite and additive, with untreated, resistant individuals experiencing the highest mortality. Furthermore, resistance and anthelmintic treatment had nonoverlapping effects on BTB pathology. The effects of resistance manifested in the lungs (the primary site of BTB infection), while the effects of treatment manifested almost entirely in the lymph nodes (the site of disseminated disease), suggesting that resistance and active worm infection affect BTB progression via distinct mechanisms. Our findings reveal that interactions between pathogens can occur as a consequence of processes arising on very different timescales.


Subject(s)
Buffaloes/immunology , Disease Resistance , Haemonchiasis/microbiology , Lung/immunology , Lymph Nodes/immunology , Trichostrongylosis/microbiology , Tuberculosis, Bovine/microbiology , Animals , Antinematodal Agents/pharmacology , Buffaloes/microbiology , Buffaloes/parasitology , Cattle , Coinfection , Disease Progression , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/microbiology , Eosinophils/parasitology , Feces/parasitology , Female , Fenbendazole/pharmacology , Haemonchiasis/drug therapy , Haemonchiasis/mortality , Haemonchiasis/parasitology , Haemonchus/drug effects , Haemonchus/genetics , Haemonchus/pathogenicity , Immunoglobulin A/blood , Lung/drug effects , Lung/microbiology , Lung/parasitology , Lymph Nodes/drug effects , Lymph Nodes/microbiology , Lymph Nodes/parasitology , Mast Cells/drug effects , Mast Cells/immunology , Mast Cells/microbiology , Mast Cells/parasitology , Mycobacterium bovis/growth & development , Mycobacterium bovis/pathogenicity , Severity of Illness Index , Survival Analysis , Trichostrongylosis/drug therapy , Trichostrongylosis/mortality , Trichostrongylosis/parasitology , Trichostrongylus/drug effects , Trichostrongylus/genetics , Trichostrongylus/pathogenicity , Tuberculosis, Bovine/drug therapy , Tuberculosis, Bovine/mortality , Tuberculosis, Bovine/parasitology
19.
J Parasitol ; 107(1): 23-28, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33498082

ABSTRACT

Gastrointestinal nematode infection of small ruminants causes losses in livestock production. Plant compounds show promises as alternatives to commercial anthelmintics that have been exerting selective pressures that lead to the development of drug-resistant parasites. Soybean (Glycine max) is an economical value crop, with a higher protein content compared to other legumes. The objective of this study was to evaluate whether the protease inhibitors exuded from the G. max mature seeds have anthelmintic activity against Haemonchus contortus. To obtain the soybean exudates (SEX), mature seeds were immersed in 100 mM sodium acetate buffer, pH 5.0, at 10 C, for 24 hr. Then the naturally released substances present in SEX were collected and exhaustively dialyzed (cutoff 12 kDa) against distilled water. The dialyzed seed exudates (SEXD) were heated at 100 C for 10 min and centrifuged (12,000 g, at 4 C for 15 min). The supernatant obtained was recovered and designated as the heat-treated exudate fraction (SEXDH). The protein content, protease inhibitor activity, and the effect of each fraction on H. contortus egg hatch rate were evaluated. The inhibition extent of SEX, SEXD, and SEXDH on H. contortus egg proteases was 31.1, 42.9, and 63.8%, respectively. Moreover, SEX, SEXD, and SEXDH inhibited the egg hatching with EC50 of 0.175, 0.175, and 0.241 mg ml-1, respectively. Among the commercial protease inhibitors tested, only EDTA and E-64 inhibited the H. contortus hatch rate (79.0 and 28.9%, respectively). We present evidence demonstrating that soybean exudate proteins can effectively inhibit H. contortus egg hatching. This bioactivity is displayed by thermostable proteins and provides evidence that protease inhibitors are a potential candidate for anthelmintic use.


Subject(s)
Exudates and Transudates/chemistry , Glycine max/chemistry , Haemonchus/drug effects , Plant Extracts/pharmacology , Protease Inhibitors/pharmacology , Seeds/chemistry , Animals , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Haemonchus/enzymology , Haemonchus/physiology , Hydrogen-Ion Concentration , Peptide Hydrolases/isolation & purification , Plant Extracts/isolation & purification , Protease Inhibitors/isolation & purification , Sheep , Sheep Diseases/parasitology , Soybean Proteins/chemistry
20.
Vet Parasitol ; 290: 109345, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33482425

ABSTRACT

The resistance of Haemonchus contortus to synthetic anthelmintics is of increasing concern; and different strategies are being evaluated to improve parasite control. The present study investigated the in vitro effects of combinations of synthetic compounds and monoterpenes. Additionally, the chemical association of the best combinations and their impact on the ultrastructural and biophysical properties of H. contortus eggs was evaluated. We assessed the efficacy of the monoterpenes, carvacrol, thymol, r-carvone, s-carvone, citral, and p-cymene and the anthelmintics, albendazole and levamisole using the egg hatch test (EHT) and the larval migration inhibition test (LMIT), respectively. The minimum effective concentrations of the monoterpenes, according to the EHT (efficacy ranging from 4.4%-11.8%) and LMIT (efficacy ranging from 5.6%-7.4%), were used in combination with different concentrations of synthetic compounds, and the IC50 and synergism rate (SR) were calculated. Fourier-transform infrared spectroscopy (FTIR) was used to analyze the chemical association between the best combinations as revealed by the in vitro tests (albendazole and levamisole with r-carvone or s-carvone). Atomic force microscopy (AFM) was used to assess the ultrastructural and biophysical properties of H. contortus eggs treated with the albendazole and r-carvone combination. Among the monoterpenes, the highest efficacies were exhibited by carvacrol (IC50 = 185.9 µg/mL) and thymol (IC50 = 187.0 µg/mL), according to the EHT, and s-carvone and carvacrol (IC50 = 1526.0 and 1785.3 µg/mL, respectively), according to the LMIT. According to the EHT, albendazole showed a slight statistically significant synergism in combination with r-carvone (SR = 3.8) and s-carvone (SR = 3.0). According to the LMIT, among the monoterpenes, r-carvone (SR = 1.7) and s-carvone (SR = 1.7) showed an increase in efficacy with levamisole; however, this was not statistically significant. The FTIR spectra of albendazole and levamisole, in association with r-carvone and s-carvone, indicated the presence of chemical interactions between the synthetic and natural molecules, contributing to the possible synergistic effects of these associations. Eggs treated with albendazole and r-carvone showed an increase in roughness and a decrease in height, suggesting that the treatment induced damage to the egg surface and an overflow of its internal contents. Overall, the combination of albendazole with r-carvone and s-carvone was efficacious against H. contortus, demonstrating a chemical association between the compounds; the significant changes in the egg ultrastructure justify this efficacy.


Subject(s)
Anthelmintics/chemical synthesis , Anthelmintics/pharmacology , Haemonchus/drug effects , Monoterpenes/chemistry , Monoterpenes/pharmacology , Animals , Haemonchus/ultrastructure , Larva/drug effects , Larva/physiology , Microscopy, Atomic Force , Molecular Structure , Motor Activity/drug effects , Ovum/drug effects , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...